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ABSTRACT 

We discuss the physical aspects of a resonance dominance model of 

inelastic electron and neutrino scattering and summarize its main 

predictions. We stress analogies with the electroexcitation of nuclei 

and discuss possible relations with the quark-parton models. We 

investigate the possibility of a breakdown of scaling as a consequence 

of changes in the form of the baryon spectrum and suggest a way of 

testing it experimentally. 
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1. Introduction 

Some time ago we suggested that probably there is a very substantial 

direct channel resonance contribution to “deep inelastic” electron and 

nucleon scattering. 
i 

The precise formulation of this hypothesis and 

its physical consequences have been worked out in a series of papers. 
2 

The purpose of this note is to discuss the physical basis of the resonance- 

dominance hypothesis and to summarize the main consequences of the 

resonance model. J.n the framework of this model, one obtains a fairly 

consistent qualitative picture of semileptonic processes, somewhat 

resembling the physical picture one forms about the mechanism of 

nuclear reactions in the compound nucleus region. Roughly speaking, 

the main assumption of “compound” theories is that the dynamics of the 

system excited is so complicated that any feasible experiment is unable 

to yield a detailed information about-say-the precise level structure. 

However, precisely the assumption that the system is extremely compli- 

cated (“Assumption of a Big Mess”, or ABM for short) leads to the idea 

of defining suitable averaged quantities, about which one can make simple 

hypotheses and - more important - which are directly measurable. 

Our model operates in terms of such averaged quantities, the basic 

properties of which are largely independent of the details df the dynamics. 

(Needless to say, a precise mathematical formulation of a statistical 

theory is a rather difficult task; in order to extract useful predictions, 

one quite often has to resort to intuitive considerations, largely based 
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upon analogies with nonrelativistic systems, .etc. ) 

In accordance with the purpose of this paper, we wish to stress the 

physical aspects of the problem, skipping most of the technical details. 

(The interested reader can find them in Ref. 2 just quoted.) We use 

conventiontional notation for the kinematical quantities involved; m will 

always denote the mass of the nucleon, and M that of a resonance. 

2. The Physical basis oft the Resonance Model. 

Experiments on both inelastic electron and neutrino scattering 

indicate a few striking features of these processes. For our purposes 

we summarize them as follows. 

i) If both the energy - and momentum transfers are “large”, the 

excitation functions - invariant amplitudes - depend essentially 

on the quantity x = g2/2mv only. (“Bjorken scaling”). 

ii) The excitation function shows well distinguishable “bumps”, 

wrrespoiiding. to the excitation of nucleon.resonances With 

increasing momentum-transfer, the bumps become less and less 

prominent. Even at fairly low values of q2, however, the excita- 

tion function follows on the average the curve obtained in the 

scaling limit. (“Bloom-Gilman duality113). 

iii) There seems to be a substantial non-diffractive contribution to the 

scattering; in particular, the excitation functions of the proton and 
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neutron appear to be significantly different from each other. 
4 

One gets the impression that as x + 0, the non-diffractive part 

decreases rather rapidly and diffraction takes over. 

These qualitative features (in particular, the one described in ii ) 

,, 

are strikingly similar to the picture one obtains in electroexcitation of 

nuclei. In order to illustrate this feature, in Fig. 1, we plotted the 

12 
nucleus 

4 
electroexcitation amplitude, (E-E’) W2 of a 6C against the 

, 
variable w = (E - E’) (4EE sink 2o/2)-i ,. where E and E’ are the 

energies of the electron before and after the scattering. Apart from 

the energy-scale, the qualitative similarity of this curve to the ones 

found in the Stanford experiments is quite evident. 

Now, when we talk about a nucleus, nobody has any serious doubt 

that a substantial part of the continuum excitation comes from the tails 

of the - increasingly overlapping - resonances. (Thus, strictly speak- 

ing, one is really dealing with a quasicontinuum, which is largely 

composed of ever-broadening, ” discrete” levels. ) 

Is it possible that a non-negligible part of the electron-and neutrino- 

excitation of nucleons has the same origin. 3 If so, how can we explain 

scaling and other features of the excitation functions? It is immediately 

clear that in order to have a “continuum-looking” excitation built up of 

resonances, it is necessary that we have many levels, which become 

more and more overlapping with increasing excitation energy. This 
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This indeed seems to be the case, as we illustrate it in Fig. 2. Besides 

the well-known, roughly equidistant spacing of levels, another empirical 

5 
rule emerges: The total widths of nucleon resonances on the average 

grow as the mass of the resonance. One indeed obtains a good average 

fit with the function: 

wrr(M) = To M-h ~Nz-wz’ 

where M stands for the mass of the resonance. Therefore above M= 

3 BeV, the resonances become for all practical purposes completely 

overlapping. Further, it is quite plausible that the number of states in 

a narrow band of energy must be rapidly increasing with the energy. 

This happens in every complicated dynamical system (e. g., a nucleus) 

and is strongly suggested by the success of dual models that it is also true 

for hadrons: How about the transition form factors? 

A transition matrix element is effectively proportional to the over- 

lap function of the initial and final states: For a highly excited state, 

the final state wave function is expected to oscillate rapidly and more-or-less 

randomly in coordinate space at distances larger than the inverse of the 

excitation energy. Thus, if the excitation energy is M - m - M (M >>m), 

one expects a significant contribution to the overlap integral in a coordinate 

range up to R* f/M. 
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The transition form factors are thus expected to depend on the 

momentum transfer in the form q2R2-q2/M2 for high enough excitations. 

It.~ should be mentioned that the same behaviour of the transition matrix 

elements was conjectured by Elitzur 
6 on the basis of his investigations 

into the resonance saturation of the Bloom-Gilman finite energy sum 

rules. 
3 

If we now select out a single state from the quasicontinuum of 

resonances (which according to ABM is not observable) its contribution - 

to the structure functions-say W2 -will consist of terms which are typically 

of the form: 

“w:*““4 (y) 2 2 i (2e+2>!! I&l2 
(2t/ r \ )! ! 

x p4 
( bp4)VM2TL 

Heres = -(p + q)’ 
2 2 

=m +Zmv-q, k is the magnitude of the relative 

momentum in the rest frame of the resonance. All the factors in this 

expression have an evident meaning. The first two factors give just 

the familiar barrier penetration factor for an orbital state I , GCY is a 

transition form factor to a resonance fully specified by the collection of 

quantum numbers LY, and, finally, the last factor is the Breit-Wigner 

factor taking into account the finite spread of the level in question. It 

should be emphasized that rcu is the reduced partial width of the resonance 

into the yN channel, whereas l? is its total width. 
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The photon being virtual, Ta may depend on -q2, of course, What do - 

we observe? Clearly, not each individual term like (2. I), but the 

sum of such terms over the levels which are contained in the energy 

band of width * P centered around MIX Formally, we can write this as 

*w2 % 9’5 ($p-;;;; I ~o&+~~ N3-2 

. . 

where the summation is extended over every quantum number (angular 

momentum, parity, etc. ) except the energy. Persuing the analogy with 

nuclear physics further, we rewrite the last expression as 

4%. 93 M2q2 (H’o)Z+Mxrz F 

where 

(24 

Fs gg)“:‘l”ey+:;+y + 
* . - 
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is just what is usually called a strength function at a given energy. 

The quantity G is now an average form factor, not depending anymore on 

a, but only on M and q2, in the form as we conjectured above. 

The strength function in turn measures the relative probability with 

which the “average resonance” decays into yN. 

Thus, in the spirit of ABM, it is G and F, the average quantities, 

which are observable and about which one should make some reasonable 

physical assumptions. 

It turns out that even the crudest assumptions lead to very reason- 

able results. 

We assume that the average form factor has essentially the same 

shape as the elastic form factor, viz. 

(2.3) 

where g 
0 

is a low energy parameter, which can be determined from 

“static” experiments (e. g. , by measuring total charges, magnetic dipole 

transitions rates in photoproduction of the lowest-lying resonances near 

threshold, etc.) The parameter ro is determined from elastic electron 

scattering (for vector form factors) and e. g., from pion photoproduction 

and PCAC (for axial form factors). 



As far as the strength function, F is concerned, we make the 

simplest possible assumption about it, namely that no channel is pre- 
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ferred over any other one in the decay of an “average resonance” of 

sufficiently high mass. 

Since we have summed over all quantum numbers IY (including 

angular momentum), the decay channels are now characterized only by 

the number of particles contained in them. 

The latter grows roughly as the mass of the resonance. 

(Imagine, e. g. , that there are only pions in the world; then a resonance 

M-m 
of mass M can decay into N = [ - 

P 1 
?I F pions, where p is the pion 

mass. ) We thus assume that 

where f is a constant to be fitted to the experimental data. 

The important fact to be emphasized is that - at least if ABM is 

~valid - f is a constant which should be the same no matter what transi- 

tion we consider. Thus we obtain a one parameter fit to all the electron- 

and neutrino scattering data! 

Finally, we sum over the masses of the resonances. Here the 

nature of the spectrum becomes important. Indeed, with an equidistant 

level spacing M2*m2n; n = 1,2,. . . j in the masses and the empirical 
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rule for the total widths, .we get: 

llwz !23 z To, f e’ 
n ( Gn -s)‘+ l-otm4nx 

[G &, Jz ~2.4) 

2 
One then writes s = q2(wM- 1) E q2( $ -1 + % 1 , where w’ is a 

9 
“scale variable”, and realizes that for large momentum transfers 2 

s 

2 
can be replaced by d (q ). This establishes the scaling property 

q 
of the structure functions. Indeed, at the elementary level we are 

treating the problem here, one finds vW2 to be roughly proportional to 

W-I 7 p&J]’ 

which-with a dipole form for G- reproduces the data quite well. 

Of course, a realistic calculation is rather more complicated than 

this. There are several form factors, kinematic singularities have to 

be extracted, isospin taken into account, etc. The details of these 

calculations have been described in Ref. 2. and we don’t want to repeat 

them here, but merely summarize the main results obtained. 



-12- THY - 12 

3. Summary of Results. 

The results obtained from the resonance model depend on the 

parameter f in the strength function. Once that (and, of course, the 

low energy parameters) are fixed, the model makes absolute predictions. 

i.) Electron and neutrino scattering, unpolarized targets. 

The structure functions satisfy vW,(w’) = $Wt(“*) in the 

scaling limit, (i.e.-, the photoabsorption cross section is purely 

transverse and the scalar cross section in neutrino reactions 

vanishes. ) The longitudinal scalar cross sections decrease 

2 -2 
relative to the transverse ones as q v . Thus effectively 

we have one structure function in electron scattering. The 

scaling limit is found to be approached rather rapidly. Above 

2 
about q = 1. 5 GeV2 the resonance bumps are effectively smeared 

out and one obtains a smooth curve for the structure functions. 

The structure function vW2 in electron scattering is shown in Fig. 3 

for a proton target together with some experimental points taken.from 

Ref. 7. For comparison we also plotted the same structure function for 

neutrino scattering. The quantity measured in present neutrino experiments 

is the event rate on a target containing an equal number of protons and 

neutrons. One prediction for this quantity together with data from CERN’ 

is shown in Fig. 4. 

The difference between the st,ructure functions of the proton and neutron 

receives contributions from I = i/2 resonances only. 
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. . 
Its calculated values are given by the curve in Fig. 5, together with the 

Stanford data of last year .7 The calculated’curve tends to fall below 

the data; due to the large errors and possible complications resulting 

from the structure of the deuteron, no definite conclusions can be 

drawn, however. 

ii. ) Spin dependence and vector-axial interferences. 

The model predicts a substantial spin dependence of one cross 

sections and a rather large VA interference term. The 

calculated theoretical asymmetry: 

A= d%, - d%a 
“54 + d% 

for ,a polarized beam-polarized target. electron scattering 

experiment is plotted in the sCaling limit in Fig. 6, whereas 

in Fig. 7, we plotted the ratio (-xW,)/W, for neutrino scattering 

on a target containing an equal number of protons and neutrons. 

No experimental data exist at present for these quantities. The 

integral of yW3 over the scale variable, has been estimated by Myatt,and 

Perkins8 from the CERN data. Our prediction agrees with their result 

within the (very large) error. The measurement of these quantities is 

very important from the theoretical point of view. Almost any model 

reproduces vW2, but various models differ widely in their predictions 

concerning the spin dependence and VA interference. 
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iii) Individual Resonance Production. 

Although the model has been devised so that it works best when the 

experimental data are averages over manJ 7 resonances, in principle one 

can calculate production cross sections of individual resonances as well. 

In Fig. 8, we plotted the predicted electroproduction cross sections of 

A(1236) and N*(1525), respectively, together with data taken from 

Ref. 9. (These predictions test the correctness of our assumptions 

about the form factors. ) There is a very reasonable agreement between 

the theoretical curve and the data. To summarize, we find that at not 

too high values of the scale variable there is very good agreement 

between the theory and the experimental data where such exist. As one 

moves far away from the threshold, say below x= 0.2, the agreement 

becomes somewhat worse. Apart from the trivial explanation that in 

that region the experimental data are taken at low values of q‘. one can 

reasonably conjecture that very far away from threshold diffractive 

contributions dominate the cross sections which are presumably not 

represented by a simple sum over resonances. Therefore the validity 

of a resonance model can be really well tested on those combinations of 

the amplitudes which do not contain diffractive contributions. 

4. Can Scale Invariance Break Down? 

We wish to discuss briefly the theoretical possibility of a breakdown 

of scale invariance due to changes in the spectrum. Naturally, there are 

several reasons why scale invariance may break down; the one to be 
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discussed here is the simplest. Our assumption about the strength 

function seems to be a fairly general one and essentially amounts to ABM. 

For the sake of definiteness we also keep the assumption that the total 

width grows linearly with the mass. (These two assumptions together 

imply that the quantity: 

is J ( 
g e(,c+2,!! % pe +I )!! Tot 

is -approximately - constant. ) ~Further, the assumption that the average 

form factor depends on q21M 2 , IS again ABM, so we do not want to 

abandon it. We do not assume, however, any longer an equidistant 

spaking of levels. Let us return to Eq. (2.4) and rewrite it-in a form 

suitable for the present discussion. We shall use the approximation: 

Assuming that the mass of the n 
th band of resonances is now given by 

a general function: 



with the inverse: 
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we find: 

*w,-- c fq2r0 - 
n (h:-s~r+~ozfqZ, 

; S Au f r, t&b) (u-dtl)=+ro$.~ ph3-Jz 

where 

Using (3.1) this becomes: 

v\nJ, 
cG(&)]z 2s Kf H’(qZd-0) - cd’-I (4.2) 

2 
For the case of a strictly linear spectrum, Mz =. nm , the derivative H l 

is a constant, H’-m 
-2 

, and we get back the old result: vW2(v, q2) - F2(0. 
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The new result, (4. 2) can be written in the form: 

THY - 12 

tr W2 s I.+‘( q2w’-l)) Fz. @‘) 

Thus, we learn the important fact that as long as the quantity q2(w0-1) 

does not vary over a wide range, deviations from scaling are small for 

almost any reasonable form of the spectrum. It would be interesting to 

test the validity of scaling in the future generation of electron and neutrino 

scattering experiments by keeping w‘ constant (say, around o’= 5, where 

scaling is well established by the Stanford experiments) and varying 

q2 over a wide range above q2=2. 

It is amusing to observe that if our qualitative picture of the spectrum 

is true (increasing level density and strong overlap, so that practically 

no sharp resonance peaks are seen at high energies), the breakdown of 

scale invariance is about the only way of observing.eventual changes 

in the baryon spectrum. 

5. Discussion. 

We based our model on apparent analogies between the excitation 

of nucleons with those of nuclei. The qualitative feature, which makes 

such an analogy meanin gful is evidently the presence of strong, short- 

range correlations in a complicated system. 

Whereas we do not want to suggest that a nucleon is literally some 

kind of a nucleus (composed e. g., of quarks in the ordinary sense of 



-18- THY - 12 
. 

the word), the analogy is well worth keeping in mind. In a sense, the 

present picture is an “anti-parton-model”. .The parton model assumes 

that the scattering takes place on a bunch of free particles (quarks?) 

and eventual correlations enter only through the distribution function of 

the quarks. The picture presented in this paper emphasizes what in 

nuclear physics would correspond to the collective aspects of the system. 

Both pictures may not be incompatible. In particular, both the parton- 

and resonance models predict scaling, they lead to the vanishing of the 

longitudinal photoabsorption cross section, etc. There are also 

differences at present. Sum rules derived on the basis of various 

versions of the free-quark model (like the Gross-Llewellyn Smith sum 

rule) are - in general - not satisfied by our structure functions. (Where 

such comparison is possible, present data seem to favor the predictions 

of the resonance model over those of the free quark model. ) An optimistic 

point of view would be to assume that the parton-and resonance models 

stress two extreme aspects of the same physical phenomenon and both 

will be incorporated one day into some unified pictures. 
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FIGURE CAPTIONS 

Figure 1. Structure function W2 of the nucleus 6C12. The dashed line is 

a curve drawn through the experimental points. The solid Iine 

is a smoothed semilocal average of the data. 

Figure 2. Empirical properties of the nucleon spectrum. Dots: I = l/2 

states. Triangles: I t 312 states. Data from A. Barbara- 

Galtieri et al. Rev. Mod. Phys. 42. 87 (1979). - 

Figure 3. Electroproduction structure function “W2 for a proton target as 

predicted by the resonance ~model. For co~mp.arison then same 

structure function as predicted for neutrino - induced reactions 

on a target containing an equal number of protons and neutrons 

is also drawn. Data taken from Ref. 7. 

Figure 4. Event rate in neutrino induced reactions for equal number of 

protons and neutrons in the target. Data from Ref. 8. 

Figure 5. Predicted pn difference in ,electroproduction. Data from Ref. 7. 

Figure 6. Predicted polarization asymmetry in eletroproduction on polarized 

protons. 

Figure 7. Ratio of VA interference term to vW2 in neutrino scattering. 
(Equal number of protons and neutrons in the target) 

Figure 8. Ratio of differential cross sections of resonance electroproduction 

to elastic scattering. Data from Ref. 9. 
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